If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+54
We move all terms to the left:
-(-16Y^2+54)=0
We get rid of parentheses
16Y^2-54=0
a = 16; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·16·(-54)
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{6}}{2*16}=\frac{0-24\sqrt{6}}{32} =-\frac{24\sqrt{6}}{32} =-\frac{3\sqrt{6}}{4} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{6}}{2*16}=\frac{0+24\sqrt{6}}{32} =\frac{24\sqrt{6}}{32} =\frac{3\sqrt{6}}{4} $
| 23.96+857.6-45.9=a | | 499.95+37.50=x | | .3x(x)=90 | | 12+3.4+87.5+15=d | | b=798.7-499.5 | | 4+2m=3(m-2)+1 | | 10x+x=40 | | 3x+6x=120 | | 43-3d=16 | | 52-4=4d | | n+253=423 | | x+1+x+3+x+5=63 | | 9^(x-6)=53 | | 20-y=186 | | 23=2x=3 | | 32x+1=28x-1 | | 2^(3x)+2^x=222 | | 5x+4=6x+8x | | 8(3x+7)=104 | | 5+e=14-3 | | 5x-18=84 | | Y=9.8x | | x/8=0.7 | | -3-8n=21 | | 10(x+7)=-40 | | (7x-6)+(2x+12)=90 | | (7x-6)+(2x+12)=180 | | (10x+5)+(12x-26)=180 | | (7x+8)+(15x-8)=90 | | (14x+4)+(11x-4)=180 | | (5x-11)+(9x+22)=90 | | (5x+6)^(2)=49 |